
Atmospheric Environments for 
Entry, Descent and Landing 

(EDL)

C. G. Justus  (carl.g.justus@nasa.gov)
Stanley Associates

Natural Environments Branch (EV13)
NASA Marshall Space Flight Center (MSFC)

June, 2007

mailto:carl.g.justus@nasa.gov


2

Atmospheric Data and Models for Science
• Most atmospheric remote 

sensing and science-
application atmospheric models 
provide temperature versus 
pressure level, T(p) [upper plot]

• Example: Thermal Emission 
Spectrometer (TES) data for 
Mars (source NASA GSFC)

• Most engineering applications 
require density as a function of 
geometric altitude, ρ(z)

• Can use perfect gas law, [p = ρ
R T ]  and hydrostatic equation 
[ dp/dz = - ρ g ] to get ρ(z) from 
T(p) [ see separate handout]

• Can also use T(p) in thermal 
wind equations to estimate 
wind [lower plot]
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General Circulation Models (GCMs)
• Global coverage, but at course 

resolution (typically a few 
degree lat-lon boxes and ~ 20-
100 vertical levels)

• Solve equations of motion and 
energy balance (usually 
assuming hydrostatic 
equilibrium)

• “Sub-Grid Scale” perturbations 
are not simulated directly, but 
are parameterized as fluxes 
across grid-box boundaries

• Can provide short-term or long-
term (climate) forecasts, as well 
as atmospheric diagnostics

• Can require long computer run 
times ( ~ several hours to days, 
depending on application and 
resolution)Cloud simulation with Mars GCM

Source: John Wilson, NOAA Geophysical
Fluid Dynamics Laboratory
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Mesoscale Models
• Local-to-regional coverage 

at moderately high 
resolution (grid boxes ~ few 
km on side)

• Solve same equations of 
motion and energy as 
GCMs, but may assume 
non-hydrostatic

• Sub-grid scale effects must 
still be parameterized

• Good for atmospheric 
diagnostics and short-term 
forecasts

• Can require very long 
computer run times (up to 
days, depending on 
application and resolution)

Mars wind simulation (MRAMS model)   
Source: Scot Rafkin, SouthWest Research 
Institute
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Engineering-Application Models
• NASA MSFC Global Reference 

Atmospheric Models (GRAMs)
– Venus-GRAM
– Earth-GRAM
– Mars-GRAM
– Titan-GRAM
– Neptune-GRAM

• Use synthesis from measured 
global climatology and/or pre-
computed output sets from 
science-application models

• Include perturbation model to 
statistically represent sub-grid 
scale atmospheric variability

• Models provide atmospheric 
diagnostics for temperature, 
density, winds, constituents, but 
do not provide forecasts

Source: Venus International Reference
Atmosphere, as implemented in NASA
MSFC Venus-GRAM
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Atmospheric Temperature

• All planets have decreasing 
temperature with decreasing
altitude from the “top” of the 
atmosphere (downward flux 
of heat absorbed from UV 
and EUV Sunlight)

• Decreasing temperature with 
increasing height above 
surface (upward flux of heat 
from surface-absorbed 
sunlight, or from planetary 
interior)

• Earth’s unique temperature 
“bulge” in the middle 
atmosphere is due to 
absorption of UV by ozone
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Atmospheric Density

• Density (ρ) determines 
spacecraft drag (D) and lift  
(L)
– D = CD ρ V2 A / 2
– L = CL ρ V2 A / 2

• Density always decreases 
with altitude

• Density decreases rapidly 
with height for terrestrial 
planets, but slowly with 
height on Titan and the 
gaseous planets

• Density “scale height” (H) 
measures rate of density 
decrease with altitude

(~ same altitude
as important
for EDL)



8

Density Scale Height (H)

• Definition:
– H = - ρ / ( dρ/dz )

• Calculation from 2 densities 
at 2 heights:
– H = ( z2 – z1)/ ln(ρ1/ρ2)

• Exponential atmosphere if 
H is constant:
– ρ(z) = ρ(0) Exp(-z/H)
– Only works over limited 

height range
– Note: ρ(0) is NOT same 

as surface density\
ρ(0)
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Density Scale Height: Important Factor for -

• Entry corridor width (range of 
usable flight path angles)

• Magnitude of maximum g-load 
(gmax)

• Altitude, spacecraft velocity, and 
atmospheric density where gmax 
occurs

• Magnitude of maximum convective 
heat flux (qmax)

• Altitude, spacecraft velocity, and 
atmospheric density where qmax 
occurs

• Magnitude of total heat load (Qtot)
• Sensitivity of gmax, qmax, and Qtot 

to entry flight path angle

(See separate Handout)

(~ important
EDL altitude)
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Winds

• Not usually important at 
high altitude, with high 
(e.g. supersonic) 
spacecraft velocities

• Can be important for 
parachute deploy and for 
spacecraft stability while 
on chute

• Important for spacecraft 
drift while on chute 
(affects final landing 
footprint ellipse)

Titan winds measured during Huygens entry
Source: Planetary Data System
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Atmospheric Constituents
• Atmospheres are usually well-mixed 

below altitudes of interest for EDL
• Effects of natural constituents on 

EDL 
– Influence on mean molecular 

mass (M)  in perfect gas-law 
relation, p = ρ R0 T / M, hence 
affecting density (ρ) and density 
scale height (H)

– Influence on convective (and 
radiative) heat flux coefficient

• Induced constituents can be 
important for radiative heating
– Example: production of CN 

radical (from N2 and CH4) by 
high entry temperatures 
produced during EDL into Titan’s 
atmosphere

– CN radiates strongly in UV, 
causing significant added 
radiative heat flux and heat load 
(above convective values) 
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Atmospheric Perturbations

Model Mean Profile

All observed atmospheres have significant “high frequency” 
perturbations of density and winds, as well as large-scale (e.g. 
global, seasonal, and time-of-day) variations

Mars (Pathfinder) Venus (Pioneer and Venera)
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Perturbation Simulations
• NASA MSFC GRAMs simulate 

both large-scale variations and 
“high frequency” perturbations

• Perturbation Effects are Important 
for –
– Thermal Protection System 

(TPS) performance (mostly 
large-scale variations)

– Stability of spacecraft attitude
– Landing footprint dispersion 

size
– Guidance, Navigation, and 

Control (GN&C) algorithm 
design

– GN&C system hardware 
performance

• Density perturbations more 
important at high altitudes (high 
speeds); winds generally more 
important at low altitudes

Mars-GRAM-simulated “high frequency” 
density perturbations
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Validation of Mars-GRAM Wind Perturbations

• MRAMS mesoscale model output courtesy Scot Rafkin (SouthWest Research Institute)
• rwscale = ratio of wind standard deviations (MRAMS/Mars-GRAM)
• Gale, Melas, Terby = Three Mars Science Laboratory candidate landing sites
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Additional Information in Handout
• A handout, provided separately, gives details on:

– Equations for “back-of-the-envelope” calculations of max 
g-load (gmax), max convective heat flux at the stagnation 
point (qmax), and total convective heat load (Qtot)

– Selected environmental parameter values for several 
planets and Titan

– References for methods and data
• The handout covers only low L/D EDL
• Effects of high L/D (not addressed here) include:

– Significantly reduces gmax
– Lowers qmax
– Raises the altitudes (and lowers the densities) at which 

gmax and qmax occur
– Increases Qtot
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